Artificial Intelligence and Statistical Techniques in Short-Term Load Forecasting: a Review

نویسندگان

چکیده

Electrical utilities depend on short-term demand forecasting to adjust proactively the production and distribution in anticipation of major variations. This systematic review analyzes 240 works published scholarly journals between 2000 2019 that focus applying Artificial Intelligence (AI), statistical, hybrid models Short-Term Load Forecasting (STLF). work represents most comprehensive this subject date. A complete analysis literature is conducted order identify popular accurate techniques as well existing gaps. The findings show although Neural Networks (ANN) continue be commonly used standalone technique, researchers have been exceedingly opting for combinations different leverage combined advantages individual methods. demonstrates it possible with these achieve prediction accuracy exceeding 99%. successful duration has identified a one day at an hourly interval. deficiency access datasets needed training models. significant gap researching regions other than Asia, Europe, North America, Australia.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short - Term Load Forecasting

This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...

متن کامل

Short-Term Load Forecasting Using Artificial Neural Network

-Artificial neural network (ANN) has been used for many years in sectors and disciplines like medical science, defence industry, robotics, electronics, economy, forecasts, etc. The learning property of ANN in solving nonlinear and complex problems called for its application to forecasting problems. This report present the development of an ANN based short-term load forecasting model for the 132...

متن کامل

A Review of Soft Computing Techniques in Short-Term Load Forecasting

Load forecasting plays a significant role in power systems and smart buildings in efficient planning, distribution and management of power. Various exogenous and meteorological factors, gave made accurate load forecasting complex making it a challenging task. In recent years, the research on shortterm power load forecasting has become inevitable for the reliable and efficient functioning of pow...

متن کامل

Short-Term Load Forecasting Using Soft Computing Techniques

Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavele...

متن کامل

Short-term Load Forecasting Method

Based on Wavelet and Reconstructed Phase Space Zunxiong Liu, Zhijun Kuang, Deyun Zhang 1.Dept. of Information and Communication Eng, Xi’an Jiaotong University. Xi’an, Shanxi, China. 2.Dept. of Information Eng, East China Jiaotong University. Nanchang, Jiangxi, China Abstract: This paper proposed wavelet combination method for short-term forecasting, which makes merit of wavelet decomposition an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Review on Modelling and Simulations

سال: 2021

ISSN: ['1974-9821', '1974-983X', '2533-1701']

DOI: https://doi.org/10.15866/iremos.v14i6.21328